SCENARIOS AND USE CASES:
IMPLEMENTATION IN THE TEST SITES

Selini Hadjidimitriou
ICOOR, UNIMORE

NeMo Stakeholder Forum Conference,
Ehningen (Stuttgart), 12th October 2017
Agenda

• Objectives of the presentation
• Business Scenarios
 – BS1: Smart Charging
 – BS2: Itinerary planning
 – BS3: Cross-Provider/Border booking, authorization and payment management
 – BS4: NeMo Network Service
 – BS5: Horizontal Services
 – BS6: eMobility Report
 – BS7: Vehicle Preparation For Drive Off
• Discussion on Use Cases
Objective

To discuss on Business Scenarios and Use Cases

• Do these Use Cases cover your needs as an electromobility stakeholder?
 – if yes, which business scenarios are you particularly interested in?
 – if no, what is not covered?
Business Scenarios and Use Cases

<table>
<thead>
<tr>
<th>Business Scenario #</th>
<th>Name</th>
<th>Use cases covered by BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS1 (A1, A2, B and C)</td>
<td>Smart Charging</td>
<td>UC1-UC8, UC15</td>
</tr>
<tr>
<td>BS2</td>
<td>Itinerary Planning</td>
<td>UC4, UC9, UC10, UC12-UC15</td>
</tr>
<tr>
<td>BS3</td>
<td>Cross-provider/border booking, authorization and payment management (Cross-country test site)</td>
<td>UC15-UC17</td>
</tr>
<tr>
<td>BS4</td>
<td>NeMo Network Service, Service Development Execution and Deployment (OPEN Cloud Marketplace)</td>
<td>UC18-UC55</td>
</tr>
<tr>
<td>BS5</td>
<td>Horizontal services: User profile, preferences and monitoring, Service Finder brokerage and pricing</td>
<td>UC49-UC56</td>
</tr>
<tr>
<td>BS6</td>
<td>eMobility report</td>
<td>UC57-UC61</td>
</tr>
<tr>
<td>BS7</td>
<td>Vehicle Preparation For Drive Off</td>
<td>UC62-UC64</td>
</tr>
</tbody>
</table>
UC 1: Convert mobility needs into charge needs

<table>
<thead>
<tr>
<th>Scope and Level</th>
<th>BS1-Smart Charging</th>
</tr>
</thead>
</table>

Goal in context
The aim is to translate mobility needs of an EV driver or a fleet manager into a charge needs. The mobility needs can be described as: I want to go to point B from point A, starting at date X. The charge needs is the amount of energy that should be transferred to the battery to fill the trajectory.

Preconditions
The EV driver or fleet manager, through his EMP or NSP tools, provides his mobility needs.

Successful outcome
The charge needs is returned.

Failure outcome
<table>
<thead>
<tr>
<th>Failure</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure</td>
<td>Service unavailable; impossible trajectory</td>
</tr>
<tr>
<td>Error message describing the error</td>
<td></td>
</tr>
</tbody>
</table>

Primary actors
EMP, VM, NSP, eRoaming Platform Provider

Secondary actors
-

Main scenario
- The EMP/NSP tool requests the NeMo Hyper-Network for this service giving as inputs the mobility needs and VIN or other EV identifier.
- The NeMo Hyper-Network routes this call to an eRoaming Platform giving inputs parameters.
- (Optional): The eRoaming Platform requests an NSP to get energy in Joule needed to cover a trajectory.
- The eRoaming Platform requests the VM backend to get vehicle real time data (SOC, preconditionment activated?)
- Computations and aggregations are done in VM back end and/or in eRoaming Platform to give more information about the charge needs.
- The charge needs is returned to the requestor.

Requirements
- **ID EMP_mob_need_01**: Get end users' mobility need: The EMP should get information related to the end-user mobility need (where to go? When? From where? ...) in order to calculate the "Charge need" and optimise the charging process.
- The mobility needs must describe at least an amount of km to run or, more precisely, a trajectory to run.
- EV owner must have given his approval in order to get personal information about his EV from VM backend.
- An eRoaming Platform must provide this service through the NeMo Hyper-Network.
- VM backend must be able to provide "real time" data of an EV.
- End to end time constraint:
 - If no request to the vehicle (data previously uploaded by the vehicle to the VM backend): The user must have an answer within the normal app usability response time
 - If request the vehicle (OEM backend requests vehicle to get real time data): The user can have an answer longer than the normal app usability response time.
BS1: Smart Charging

Objective:

• **To charge vehicles based on:**
 – EV driver and fleet manager preferences (cost, time, place of recharge)
 – Charging point
 – Renewable energy availability
 – Grid constraints

• **To provide services for all stakeholders of the EV:**
 – to optimize energy efficiency of the grid
 – to optimize the usage rate of CPOs

• **To consider SOH to determine the charging profile of a vehicle**
NeMo asks CPOs information about CP located closed to the user.

NeMo sorts CP based on traffic or users constraints.

The user selects the preferred solution.

The EMP book the CP using NeMo services.

The conversion of mobility needs into charge needs.

Mobility needs from DSO/TSO.
BS1: Smart Charging A2

1. DSO sends constraints/opportunities to the CPO using NeMo services.
2. Traffic interacts with Nemo.
3. eMSP and Nemo
4. CPO and Nemo
5. Tariff modulation: Energy – CPO- eMSP- User
6. eRoaming
7. User interaction
8. NeMo, Stakeholder Forum, Stuttgart
BS1: Smart Charging B

CPO pilots energy to plugged vehicles

DSO/TSO constraints/opportunities

ISO 15118

Aggregator

Nemo

eMSP

eRoaming

Smart “load” + V2G Aggregation + ISO-15118

12th October 2017 NeMo, Stakeholder Forum, Stuttgart
The SOH can be determined while charging and communicated to the VM via NeMo.
BS2: Itinerary planning

Objective:
to assist an EV driver in planning and driving an itinerary

The Itinerary Planning should take into consideration:
• static restrictions and information (such as route, vehicle's charge capacity, etc.)
• dynamic restrictions and information (such as remaining charge, weather, charge price, driving profile, etc.)
• security sensitive situations (such as running out of charge in a highway with no emergency stopping lane)
BS2: Itinerary planning

- CPO availability
- Estimated charge status along itinerary
- Charging time
- Charging goals per station

1. NSP
2. Nemo
3. Traffic
4. eRoaming

ISO 15118

Aggregator

CPO

DSO/TSO

Nemo

12th October 2017
NeMo, Stakeholder Forum, Stuttgart
Objectives:

- **to automate** the different phases of EV charging so that an EV driver can have a **seamless charging** experience across different providers and networks
- **to simplify** or **fully automate** the different steps in the charging process (such as booking, authorization/authentication and payment):
 - seamless experience for a **single CPO** in the "**base network**" of a driver
 - seamless experience for **different CPOs outside** of the driver's base location (i.e. by performing a cross-border EV charge plan)
BS3: Cross-Provider/Border booking, authorization and payment management

1. EV driver provides EMP account details

 - eMSP
 - Nemo
 - eRoaming

2. B2C expected pricing and availability

 - CPO
 - DSO/TSO

Seamless payment
The NeMo Service Development Environment develops and offers new IT services (OPEN Cloud Marketplace) to the participants (Business Partners) in the NeMo Hyper-Network.

- Participants (Business Partners) in the Hyper-Network are able to exchange data and services such as IT service offerings.
- Stakeholders, like IT service providers offer their IT service in the network, either to all or selected participants (Hyper-Network Service).
BS5: Horizontal Services

Objective: to develop and deploy horizontal NeMo Hyper-Network services:

- **actors’ monitoring and profiling**: estimate actors’ activity, interests and behavior
- **service finding**: find the best services candidates according to actor request
- **service optimizer**: provide the most appropriate service ranking based on actor profile, environmental variables or EV status
- **service brokerage**: propose better prices based on CPO preferred alternatives
- **rating/pricing**: access centralized listing of prices of the services that meet service request criteria
BS6: eMobility Report

Objective: to provide information to different actors:
- **DSO**: Grid load report, to anticipate grid impact, charge need by location to know the need of energy for each location (available renewable resources).
- **Public authorities**: Charge point usage, mobility patterns, to check alternative fuel directive roll out, traffic information.
- **CPO**: Charge point usage rate per type of location, to identify best locations for investment, charge needs per location, constraints for the DSO on the supply / available power supply.
- **VM**: mobility patterns, to better specify batteries and engines, usage rate of infrastructure (assure the customer about the level of re-charging).
BS7: Vehicle Preparation For Drive Off

Predict drive off time

Heating up the cabin
Stop charging at 99%
Put battery to optimal temperature range
Charge 100%
Thank you!

Selini Hadjidimitriou
ICOOR, UNIMORE