Hyper-Network for electroMobility

NeMo Data Translators

- Mapping creation guide

Work package WP3: NeMo Data Management

Task Task 3.2: Data Translators

Authors Singular Logic

Dissemination

Confidential (CO)
level

Status Draft

Document date 24/05/2018

Version number 0.5

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 713794.

e N Y.]

Table of contents

1. Introduction

2. Data translation mapping by example

Listing 1
Listing 2
Listing 3
Listing 4
Listing 5
Listing 6

Mapping creation guide Version 0.5 Date 14/03/19 Page | 2

1. Introduction

The main role of Data Translators in NeMo is to transform messages between platform
specific data models (PSMs) used as input and output data of registered services and the
NeMo Common Information Model (CIM), so that services within the Hypernetwork are
represented in a homogenous manner. In order to achieve the above, the Data Translator
instance deployed at the NeMo node of the Service Provider (SP) owning the service must be
configured accordingly, so that this service can be made seamlessly accessible. During this
procedure the Data Translator is provided with the PSM-to-CIM mapping, which, expressed
though the appropriate XML structure, reflects the exact relationships between the platform-
specific data model based on which the service is implemented and the CIM, in both semantic
and syntactic terms. Further, this mapping allows the SP to specify visibility levels for all data
involved at a fine-grained level (expressed in CIM). Based on this information, the Data
Translator internally generates the logic required to transform incoming requests and outgoing
responses at invocation time, expressed in the Transformation Workflow Language.

The mapping XML file is generated during service creation time. This configuration is foreseen
to be specified with the help of an XML Editor within the Eclipe Environment. The output of file
will then be pushed to an artefacts server, which will be a Gitlab Server, where it is available
for further processing during registration time.

The following section presents the main features of the XML language used for the mapping,
along with examples illustrating said features and demonstrating how a complete mapping file
for a service can be created.

2. Data translation mapping by example

The root of the translation XML file is a <MAPPINGS> element. This consists of a number of
<MAPPING> elements defining the correspondences between any PSM and the CIM in a
bidirectional way. More specifically, for each <MAPPING> element the user mandatorily
specifies the following two sub-elements:

e the <SOURCE TYPE> (multiple instances are allowed): this is the PSM data type which
will be the source to translate to a corresponding CIM data object. It will be defined as a
path, so as to indicate the hierarchical location of the transformation source. The optional
attribute data_ type, acquiring the corresponding string values, may be used in order to
denote if the data in question will be represented as string, double, int, etc., for
cases where this cannot be directly derived.

e the <TARGET TYPE> (multiple instances are allowed): this is the CIM data type that will
be derived as a result of the current mapping. Here, the attribute visibility can
additionally be used so that the user can specify the visibility levels for all data involved at
a fine-grained level (expressed in CIM). The visibility attribute can acquire one of
two string values, SP_ONLY and SP_CONTRACTS. The former is used to indicate that
the corresponding data object is accessible only by the current SP, by this or potentially
any other of their services; the latter means that disclosure of the data object must be
averted against any entity that has not signed a contract with the current SP. The
translator, based on this indication, will automatically employ suitable security
transformations through dedicated built-in functions each time data leave an SP’s domain.
The default value according to the Translator specification is SP_CONTRACTS, leaving it
to the user to prescribe a stricter policy when needed.

Note that the reverse transformations, i.e., from CIM to PSM, will be derived automatically by
the same mapping file by reversing <SOURCE TYPE> and <TARGET TYPE> and through
additional adaptations explained in what follows.

From there on there are two possibilities; either the <OPERATION> to be performed on the
source(s) in order to produce the target(s) is defined, or another <MAPPINGS> element is
defined, with the latter encompassing a series of nested <MAPPING> elements, denoting
hierarchical/recursive mapping definitions.

The listing below shows a very simple case where a PSM DataAccessClearanceRequest
is mapped to a CIM object of the same name. After mapping the top-level objects, another
<MAPPINGS> element is used to map source and target nested fields, in this case
clearancelId and clearanceId2, respectively.

Listing 1

<MAPPINGS xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="NeMo mapping v0.9.1.xsd">

<MAPPING>
<SOURCE_TYPE>DataAccessClearanceRequest</SOURCE TYPE>
<TARGET TYPE>DataAccessClearanceRequest</TARGET TYPE>
<MAPPINGS>
<MAPPING>
<SOURCE_TYPE>DataAccessClearanceRequest/clearanceId</SOURCE TYPE>

<TARGET TYPE>DataAccessClearanceRequest/clearanceId2</TARGET_TYPE>

</MAPPING>
</MAPPINGS>
</MAPPING>

</MAPPINGS>

Upon reaching the innermost mapping level, the user specifies the <OPERATION>, an
element defining the function that will eventually be used for the transformation. It will further
specify the exact parameters to be used by each function and its exact output, among the
ones potentially implied as part of the source(s) and target(s), through its sub-elements
<INPUT> and <OUTPUT>. The optional string attributes input container and
output container are used to cover cases where the input is part of the source
(respectively, the output is part of the target) specified in the mapping, hence the sources
and/or targets concerning this specific operation must be further distinguished. The optional
attribute data type may be used in order to denote if the data in question will be
represented as string, double, int, etc., for cases where this cannot be directly
derived. We currently distinguish between three types of operations.

— Predefined operations represent basic built-in functions, defined through the
<FUNCTION> element together with its reverse if applicable
(<REVERSE FUNCTION> element), with the latter intended to be used for the
reverse transformation, i.e., from CIM to PSM. For both regular and reverse
functions, the user may define a <FUNCTION NAME> and, optionally, one or more
parameters through <FUNCTION PARAMETER> elements. (any value type is
allowed). The <FUNCTION NAME> can acquire one of the following contents,
corresponding to the built-in functions currently made available by the Translator:
VALUE_COPY, UPPER_CASE, LOWER_CASE, CAMEL_CASE, SPLIT (requires
separator value as parameter), CONCAT (requires separator value as parameter),
REPLACE (requires regular expression and replacement parameters),
DEFAULT_VALUE (requires the default value as parameter), SUBSTRING
(requires the start and/or end index as parameter, UUID (creates a new UUID

value), VALUE_MULTIPLIER (requires multiplier value as parameter, in case of
not just multiplication between input values), VALUE_DIVIDER (requires divider
value as parameter, in case of not just division between input values). When the
reverse function is used, inputs, outputs, input containers and output containers
will be reversed as well.

— Value mappers define correspondence pairs between different enumerations
(<MAP PAIRS> element). The <MAP PAIRS> element consists of a series of
<MAP_ PAIR> elements, corresponding to single PIM to CIM value mapping. Each
of these pairs defines a set of <SOURCE VALUE> and a set of <TARGET VALUE>
(any value type is allowed). The former specifies the PSM value(s) while the latter
the corresponding CIM value(s). Further, <MAP PAIR> selection priority can be
specified by the optional attribute priority (integer), in order to cover cases
where one PSM value set can possibly correspond to more than one CIM value set
and vice versa.

— Custom operations allow the user to “load” the ftranslator with custom
transformation functions in order to cover more complex cases, indicating for each
transformation case one class for both the regular and reverse conversions. For
this type of operations, the string element <OPERATION CLASS> points to the
implementation, so that the Translator can locate and invoke it when needed.
<CONVERT PARAMETER> and <REVERSE CONVERT PARAMETER> (any value
type is allowed) allow specifying necessary execution parameters distinctively for
each conversion type.

Progressing the previous example, it is defined below that for the mapping of clearance IDs,
the value of the source is simply copied to the target field.

Listing 2

<MAPPINGS xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="NeMo mapping v0.9.1.xsd">

<MAPPING>
<SOURCE_TYPE>DataAccessClearanceRequest</SOURCE_TYPE>
<TARGET_TYPE>DataAccessClearanceRequest</TARGET TYPE>
<MAPPINGS>
<MAPPING>
<SOURCE_TYPE>DataAccessClearanceRequest/clearanceld</SOURCE_TYPE>
<TARGET TYPE>DataAccessClearanceRequest/clearanceld2</TARGET TYPE>
<OPERATION xsi:type="PredefinedOperationType">
<INPUT>DataAccessClearanceRequest/clearanceId</INPUT>
<OUTPUT>DataAccessClearanceRequest/clearanceId2</OUTPUT>
<FUNCTION>
<FUNCTION NAME>VALUE_COPY</FUNCTION_ NAME>
</FUNCTION>
<REVERSE FUNCTION>
<FUNCTION NAME>VALUE_COPY</FUNCTION_ NAME>
</REVERSE_FUNCTION>
</OPERATION>
</MAPPING>
</MAPPINGS>
</MAPPING>

</MAPPINGS>

Further, the user is enabled to specify conditions that must be applicable to source types in
order for the transformation to occur, through the <CONDITION> element. Simple conditions
consist of a <SUBJECT>, an <OPERATOR> and a <VALUE>. The <SUBJECT> element
defines the source of the data that the condition applies to. The optional string attribute
subject container is used to denote the specific source that the condition applies to, in
case the condition can not be applied directly to any source of the mapping. The <VALUE>
can be of any type, while the <OPERATOR> can take one of the following string values:
lessThan, greaterThan, lessEqual, greaterEqual, noEqual, equalTo, in, exists. The in
operator allows the definition of complex conditions where the condition’s value should belong
to the specified set(s) of values. For the reverse transformation, the <CONDITION> element
in fact implies that the target type to be created must fulfil the specified constraints.

Presenting a more collective example, the listing below shows part of the mapping definition in
order to obtain an EVSE and associated business objects, as defined in the CIM, from a list of
EVSERichDescrip elements described according to the eMIP protocol'. The EVSE
(Electronic Vehicle Supply Equipment) or Charging Point is a system than can charge one EV
at a time, and is managed by the corresponding CPO (Charge Point Operator).

First, it is defined that each EVSERichDescrip Wwithin EVSERichDescripList
corresponds to a CIM EVSE. Proceeding with filling in each EVSE object, a specific
EVSEAttribute from the EVSEAttributeList comprising EVSERichDescrip IS
mapped to the CIM EVSEID; the attribute is chosen among all others in the list based on its
attributeId (3001) through the corresponding condition. The operation used for the
mapping is a predefined one, specifically VALUE COPY, meaning that the
attributeValue (specified as INPUT, where the input container isthe same as the
SOURCE_TYPE) will be used as is to form the EVSEID; naturally the reverse function is the
same in this case.

! This, as well as all other examples that follow, are taken from the mapping xml file used for
the configuration of the translator regarding the provision of the eMIP web service named
“eMIP_TolOP_GetEVSEData_FullList”, used by an eMSP to get data of all EVSEs he can
access.

Listing 3

<MAPPINGS xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="NeMo mapping v0.9.1.xsd">

<MAPPING>
<SOURCE_TYPE>EVSERichDescripList/EVSERichDescrip</SOURCE TYPE>
<TARGET7TYPE>EVSE</TARGETiTYPE>
<MAPPINGS>
<MAPPING>

<SOURCE_TYPE>EVSERichDescripList/EVSERichDescrip/EVSEAttribu
teLiSt/EVSEAttribute</SOURCE_TYPE>

<TARGET7TYPE>EVSE/EVSEID</TARGETiTYPE>
<OPERATION xsi:type="PredefinedOperationType">

<INPUT
input container="EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/EVSEAttribute">/att
ributeValue</INPUT>

<OUTPUT>EVSE/EVSEID</OUTPUT>
<FUNCTION>
<FUNCTION NAME>VALUE COPY</FUNCTION NAME>
</FUNCTION>
<REVERSE_FUNCTION>
<FUNCTION NAME>VALUE COPY</FUNCTION NAME>
</REVERSE FUNCTION>
</OPERATION>
<CONDITION xsi:type="SimpleConditionType">

<SUBJECT
subject container="EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/EVSEAttribute">/a
ttributeId</SUBJECT>

<OPERATOR>equalTo</OPERATOR>
<VALUE>3001</VALUE>
</CONDITION>
</MAPPING>
</MAPPINGS>
</MAPPING>

</MAPPINGS>

Below it is shown how the mapping between enumerated values is performed. The value of
EVSEAttribute with id 3041 corresponds to field Operstate attribute of the
OperationalState BO in CIM. But since the permitted values are different in the two data
models and the user knows the correspondence, they specify a number of MAP PAIR
elements so that the Translator can infer at invocation time the value of the OperState
(TARGET VALUE) based on the attributevalue of said EVSEAttribute (SOURCE-
VALUE) , and vice versa.

Listing 4

<MAPPING>
<SOURCE_TYPE>EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/EVSEAttribute</SOURCE_TYPE>

<TARGET TYPE>EVSE/OperationalState/OperState</TARGET TYPE>
<OPERATION xsi:type="ValueMapperOperationType">

<INPUT input container="EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/
EVSEAttribute">/attributeValue</INPUT>

<OUTPUT>EVSE/OperationalState/OperState</OUTPUT>
<MAP_PAIRS>
<MAP_PAIR>
<SOURCE_VALUE>0</SOURCE_VALUE>
<TARGET_VALUE>1</TARGET_VALUE>
</MAP_PAIR>
<MAP_PAIR>
<SOURCE_VALUE>1</SOURCE_VALUE>
<TARGET_VALUE>2</TARGET_VALUE>
</MAP_PAIR>
<MAP PAIR>
<SOURCE_VALUE>2</SOURCE_VALUE>
<TARGET_VALUE>3</TARGET_VALUE>
</MAP_PAIR>
<MAP_PAIR>
<SOURCE_VALUE>3</SOURCE_VALUE>
<TARGET_VALUE>7</TARGET_VALUE>
</MAP_PAIR>
</MAP_PAIRS>
</OPERATION>
<CONDITION xsi:type="SimpleConditionType">

<SUBJECT subject container="EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/
EVSEAttribute">/attributeId</SUBJECT>

<OPERATOR>equal To</OPERATOR>
<VALUE>3041</VALUE>
</CONDITION>

</MAPPING>

In Listing 5, the use of two specific data type attributes, array and inner array, Iis
showcased. The former, characterising the top TARGET TYPE, indicates that from
EVSEAttribute elements with attributelds in the range 4001-4082 (as inferred by the
condition in the end of the listing) an array of ChargingConnector BOs is created, rather than
one single ChargingConnector. The nested mappings define how two fields of each
ChargingConnector are created, TypeOfConnector and MaxPower. Here, data type
inner array in the SOURCE TYPE denotes that each selected EVSEAttribute
consists in itself in an array of elements, so that each attributevValue showing a
TypeOfConnector is combined with the attributevalue showing to a MaxPower and
holding the same position in its corresponding inner array. Schematically, the source and
target structures are as follows:

o eMIP
<EVSEAttribute>
<attributeId>4021</attributeId>
<attributevValue>1</attributevalue>
<attributevValue>2</attributevalue>
</EVSEAttribute>
<EVSEAttribute>
<attributeId>4043</attributeId>
<attributevValue>0.000</attributevValue>
<attributeValue>5.000</attributevValue>
</EVSEAttribute>
e CIM

<ChargingConnector>
<TypeOfConnector>1</attributeId>
<MaxPower>0</attributevValue>

</ChargingConnector>

<ChargingConnector>
<TypeOfConnector>2</attributeId>
<MaxPower>5000</attributevValue>

</ChargingConnector>

Listing 5

<MAPPING>
<SOURCE_TYPE>EVSERichDescripList/EVSERichDescrip/EVSEAttributelList/EVSEAttribute</SOUR
CE TYPE>

<TARGET TYPE data_type="array">EVSE/ChargingConnector</TARGET TYPE>
<MAPPINGS>
<MAPPING>

<SOURCE_TYPE
data_type="inner array">EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/EVSEAttribute</S
OURCE_TYPE>

<TARGET TYPE>EVSE/ChargingConnector/TypeOfConnector</TARGET TYPE>

<OPERATION xsi:type="ValueMapperOperationType">

<INPUT input container="EVSERichDescripList/EVSERichDescrip
/EVSEAttributelList/EVSEAttribute">/attributevalue</INPUT>

<OUTPUT>EVSE/ChargingConnector/TypeOfConnector</OUTPUT>
<MAP PATIRS>
<MAP_PATIR>
<SOURCE_VALUE>2</SOURCE_VALUE>
<TARGET VALUE>21</TARGET VALUE>
</MAP_PAIR>
<MAP_PATIR>
<SOURCE_VALUE>5</SOURCE_VALUE>
<TARGET VALUE>19</TARGET VALUE>
</MAP_PAIR>
<MAP_PAIR>
<SOURCE_VALUE>6</SOURCE_VALUE>
<TARGET VALUE>20</TARGET VALUE>
</MAP_PAIR>
</MAP_PAIRS>
</OPERATION>
<CONDITION xsi:type="SimpleConditionType">

<SUBJECT subject container="EVSERichDescripList/EVSERichDescrip/
EVSEAttributeList/EVSEAttribute">/attributeId</SUBJECT>

<OPERATOR>equalTo</OPERATOR>
<VALUE>4021</VALUE>
</CONDITION>

</MAPPING>

<MAPPING>

<SOURCE_TYPE data type="inner array">EVSERichDescripList/
EVSERichDescrip/EVSEAttributeList/EVSEAttribute</SOURCE TYPE>
<TARGET TYPE>EVSE/ChargingConnector/MaxPower</TARGET TYPE>

<OPERATION xsi:type="PredefinedOperationType">

<INPUT input container="EVSERichDescripList/EVSERichDescrip/
EVSEAttributeList/EVSEAttribute">/attributeValue</INPUT>

<OUTPUT>EVSE/ChargingConnector/MaxPower</OUTPUT>
<FUNCTION>
<FUNCTIONiNAME>VALUE7MULTIPLIER</FUNCTIONiNAME>
<FUNCTION_PARAMETER>1000</FUNCTION_PARAMETER>
</FUNCTION>
<REVERSE FUNCTION>
<FUNCTION_NAME>VALUE_DIVIDER</FUNCTION_NAME>
<FUNCTION_PARAMETER>1000</FUNCTION_PARAMETER>
</REVERSE7FUNCTION>
</OPERATION>
<CONDITION xsi:type="SimpleConditionType">

<SUBJECT subject container="EVSERichDescripList/
EVSERichDescrip/ EVSEAttributelList/EVSEAttribute">/attributeId</SUBJECT>

<OPERATOR>equalTo</OPERATOR>
<VALUE>4043</VALUE>
</CONDITION>
</MAPPING>
</MAPPINGS>
<CONDITION xsi:type="SimpleConditionType">

<SUBJECT subject container="EVSERichDescripList/EVSERichDescrip
/EVSEAttributeList/EVSEAttribute">/attributeId</SUBJECT>

<OPERATOR>in</OPERATOR>
<VALUE> (4001-4082) </VALUE>
</CONDITION>

</MAPPING>

The following excerpt shows how custom functions can be declared for transformations
between source and target values. With custom operations, it is assumed that the logic for the
reverse transformation is contained in the same class, differentiating what is being executed
based on whether it receives the INPUT or the OUTPUT (in the reverse case), i.e., on the
translation direction (PSM to CIM or CIM to PSM) .

Listing 6

<MAPPING>

<SOURCE_TYPE

data type="inner array">EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/EVSEAttribute</S
OURCE TYPE>

<TARGET TYPE>EVSE/ChargingStation/ChargingPool/OpenHours</TARGET TYPE>
<OPERATION xsi:type="CustomOperationType'">

<INPUT
input_container="EVSERichDescripList/EVSERichDescrip/EVSEAttributeList/EVSEAttribute">/</INPUT
>

<OUTPUT>EVSE/ChargingStation/ChargingPool/OpenHours</OUTPUT>

<OPERATION CLASS>eu.nemo.translator.operation.gireve.OpenHoursConverter
</OPERATION_CLASS>

</OPERATION>
<CONDITION xsi:type="SimpleConditionType">

<SUBJECT subject container="EVSERichDescripList/EVSERichDescrip
/EVSEAttributeList/EVSEAttribute">/attributeId</SUBJECT>

<OPERATOR>in</OPERATOR>
<VALUE>(1101,1103\-2,1103\-3,1103\-4) </VALUE>
</CONDITION>

</MAPPING>

